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ON SEGMENTATION OF TINE SERIES*

Stanley L. Sclove
University of Illinois at Chicago Circle

ADSTRACT

j The problem of partitioning a time-series into segments is

considered. The segments fall into classes, which may correspond to

phases of a cycle (recession, recovery, expansion in the business

cycle) or to portions of a signal obtained by scanning (background/

clutter, target, background/clutter again, another target, etc.; or

normal tissue, tumor, normal tissue). Parametric families of

distributions are considered, a set of parameter values being

associated with each class. Vith each observation it associated an

unobservable label, indicating from which class the observation

arose. The label process is modeled as a Harkov chain.

Segmentation algorithms are obtained by applying a method of

iterated maximum likelihood to the resulting likelihood function.

In this paper special attention is given to the situation in which

the observations are conditionally independent, given the labels.

A numerical example is given. Choice of the number of classes, using

Akaike's automatic (model) identification criterion (AIC), is

illustrated. Prediction is considered.

Key Words 3 Phrases: forecasting; prediction; signal analysis;
isodata procedure; Markov chains; maximum likelihood; Akaike's
automatic (model) identification criterion (AIC).
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ON SEGMENTATION OF TIME SERIES*

Stanley L. Sclove
University of Illinois at Chicago Circle

1. Introduction

The problem of "segmentation" considered here is: Given a time series

{xt, t-l,2,...,n}, partition the set of values of t into sub-series (segments,

regimes) which are relatively homogeneous. The segments are assumed to fall

into several classes. In processes which may be considered as cycles the

classes are phases of the cycle.

Examples. (i) Segment an economic time series into periods of recession,

recovery, and expansion. Here there are three classes of segment. (ii) Seg-

ment an electrocardiogram into rhythmic and arhythmic periods (two classes

of segment). (iii) Segment an electroencephalogram of a sleeping person

into periods of deep sleep and restless or fitful sleep (two classes of

segment). (iv) Segment a received signal into segments of background,

target, background again, another target, etc.

The observation X may be a scalar, vector, or matrix--any element of

a linear space, for which the operations of addition and scalar multiplica-

tion are defined. (One needs to perform such operations as xt - cXt-1,

where c is a scalar.)

In some applications the definition of the classes involves the values

of the observed x; in others, their definition may be logically independent

of the value-space of X. In the former case the classes may be viewed simply

as a partition of the value-space of X.

*Invited Paper, Special Session on Cluster Analysis, 789th Meeting, American

Mathematical Society, University of Massachusetts, Amherst, MA, October 16-18,
1981



-2-

2. The Model

One can imagine a series which is usually relatively smooth but occa-

sionally rahter jumpy as being composed of sub-series which are first-order

autoregressive [AR(l)], the autocorrelation coefficient 0 being positive

for the smooth segments and negative for the jumpy ones. In a simple case

one might try fitting a segmentation with two classes given by AR(I; I )

and AR(l; 02), where one of the O's is positive and the other is negative.

The mechanism generating the process changes from time to time, and

these changes manifest themselves at some unknown time points (epochs)

Tl T2' . T M1 that is, there are m segments. The integer m and the

epochs T , g=l,2, ... ,m-l, are unknown. Generally there will be fewer than

m generating mechanisms. The number of mechanisms (classes) will be denoted

by k; it will be assumed that k is at most m. In some situations, k is

specified; in others, it is not. With the c-th class is associated a

stochastic process, P9 say. For example, above we spoke of a situation

with k=2 classes, where, for c-1,2, the process Pc is AR(I; ).

Now with the t-th observation (t=1,2,...,n) associate the label yt ,

which is equal to c if and only if xt arose from class c, c=l,2,,...k. Each

time-point t gives rise to a pair (xtYt ), where xt is observable and yt is

not. The process {x t } is the observed time series, and yt I will be called

the label process.

Define a segmentation, then, as a partition of the time index set

ft: t=l,2,...,n} into subsets SI - {1,29....,t 1 }, S2 & {t1+l,...,t 2 }, ...

Sm = {t m-1+ , ...,n }, where t <t 2< ...<t m<t m=n. Each subset S is a

segment. The integer m is not specified. In the context of this model,

to segment the series is merely to estimate the y's.

AP



-3-

The idea underlying the development in the present paper is that of

transitions between classes. The labels y will be treated as random variables

rt with transition probabilities Pr(rtfdlrt-l=C) =Pcd' taken as stationary,

i.e., independent of t. The matrix of transition probabilities will be denoted

by P, that is, P [p cdc=l,2 .... k

j d=l,2,. ..,k

If a process is to be strictly cyclic, like intake, compression, combustion

for a combustion engine, or recession to recovery to expansion to recession, etc.,

In the business cycle, then this this condition can be imposed by using a

transition probability matrix such as the following, with zeros in the appro-

priate places.
Label at time t

1: 2: 3:
_Recession Expansion Recovery

Label at 1: Recession Pll P12 PI3
0

time t-i 2: Recovery P2 1=
0  P22  p23

3: Expansion P31 P32" 0 P33

Later we shall consider a matrix like this but with different restrictions;

namely, we shall allow transitions only to adjacent states (classes). See

Section 4.2.

Segmentation will involve the simultaneous estimation of the parameters

of the stochastic processes P , c-1,2,...,k, the transition probability matrix

P, and the labels {yt t=l,2.... ,n}.

A joint probability density function (p.d.f.) for {(xt rt), t-l,2,..,,n}
-,t t

is, using f as a generic symbol for any p.d.f., and successilx1yconditioning

each of rl, x1, r2, x2, r3, x3 ... n on all preceding X'x and r's.
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nf)fl xlj~l)t-T f(Y tIx t-lTtY ..., Y MxtlyttlY~,.. ) (2.1)

The working assumptions of this paper are the following.

(A.1) The t are a first-order stationary Markov chain-- independent of the x's:

f(ytlx t,Ttl ....,Xl,1I )  = p t_17 t .  (2.2)

(A.2) The random variable X depends upon the past only through its own labelt

and through previous X's, not through previous labels:

f (xttXtltl,.... Xl, )  f (xt tt_ .... ,x1 )  (2.3)

With these assumptions (2.1) becomes
n

f(-Yl)f(XlIyl)t__ P Ytiytf(x t 1. tl) . (2.4)

Note that this is
k k n cd n(1fxl1 [fxItx-

17-T.7 p fY)x y -T fcd .. 'x . )' (2.5)
c-l d=l t=2

where ncd: number of transitions from class c to class d (unobservable).

This model, with transition probabilities, has certain advantages over

a model which uses only the epochs (change-points). The epochs are discrete

parameters, and, even if the corresponding generalized likelihood ratio were

asymptotically chi-square, the number of degrees of freedom would not be

clear. On the other hand, the transition probabilities vary in an interval

and it is clear that they constitute a set of k(k-l) free parameters.

Examples. (i) If each class-conditional process P is a first-orderc

Marko process, then

f(xtlytXt-l,...,x 1 f(xtlytXt-1). (2.6)

(ii) If in addition the c-th class-conditional process is Gaussian first-order

autoregressive with autoregression coefficient *c and constant term 6c with

2
common variance a , then (2.6) holds with

f(xtlytac,xt~) Ua ( 2)-1/2 exp[-U2/(2a 2) ,
ft t- tc



where

U xt -Utc = t  C (ct-1 + c )

E.g., the value of the likelihood for y 1 = "" = YM and yM+l 2

Ym ' Yn is, for given X1,

m-i n-m-2 (21 2)-(n-l)/2 2

where
n n

-[x - 4x +62)]2
t2 tmt~l t 2 t-l 2

In the simplest case the X's are (conditionally) independent, given the y's.

* Then f(x tly txt1,. .., xlY) f(xtlyt). We shall pay special attention to

this case in the present paper. The p.d.f.'s f(xlyt=c), c=1,2,...,k, are called

the class-conditional densities. In the parametric case the class-conditional

density takes the form

f(x IYt=c) = g(x ;), (2.7)
tt t c

where a is a parameter indexing a family of pd.f.'s of form given by g.

3. An Algorithm

3.1. Development of the algorithm

The likelihood L is (2.4) or (2.5), considered as a function of the

parameters, for fixed {xt 1. From (2.4), (2.5), and (2.7), the likelihood L

can be written in the form

L = A({pcd })B({Yt},{ c). (3.1)

Hence, for fixed values of the y's and B's, L is maximized with respect to the
k k nd

p's by maximizing factor A. But A - IT FT pcd The n are specified
c-1 d-l

by the y's. So from the usual multinomial model, it follows that the maximum

likelihood estimates of the p's, for fixed values of the other parameters,

are given by
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Pcd n cd/ncp (3.2)

where

nc  n cl + nc2 + . +. +nck.

Further, given the p's and y1s, the estimates of the distributional parameters

--the O's--are easy to obtain. This suggests the following algorithm.

J Step 0. Set the O's at initial trial values. Set the p's at intial trial

values. Set f(y1) at initial trial values, e.g., f(yl) 1/k, for y1=1,2,...,k.

Step 1. Estimate y1 by maximizing f(Y1 )f(xly 1).

Step 2. For t=2,3,...,n, estimate y by maximizing

P t_ Y f(x tlyt 'xt-1 ....,x ).

Step 3. Now, having labeled the observations, estimate the distributional

parameters, and estimate the transition probabilities by (3.2),

Step 4. If no observations has changed labels from the previous iteration,

stop. Otherwise, repeat the procedure from Step 1.

Step 2 is Bayesian classification of x., with prior probabilities

p yty t . Hence all the techniques for classification in particular models

are available (e.g., use of linear discriminant functions when the observations

are multivariate normal with common covariance matrix).

3.2. The first iteration

When the k class-conditional processes consist of independent, identically

distributed normally distributed random variables with common variance, one

can start by choosing initial means and labelling the observations by a minimum-

distance clustering procedure. [This is one iteration of ISODATA (Ball and Hall,

1967). One could iterate further at this stage.] From this clustering

initial estiamtes of transition probabilities and the variance are obtained.

This starting procedure could also be used for fitting AR models by taking the

initial triarvai es of the autoregression coefficients as zero.
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3.3. Restrictions on the transitions

As mentioned above, one might wish to place restrictions on the transitions,

e.g., to allow transitions only to adjacent states. The model does permit

restrictions on the transitions, as discussed above. The maximization is

conducted, subject to the condition that the corresponding transition probabili-

ties are zero. This is easily implemented in the algorithm. Once one sets

a given transition probability at zero, the algorithm will fit no such tran-

sitions, and the corresponding transition probability will remain zero at

every iteration.

4. An Example

Here, for a specific numerical example, the problems of fitting the model

for a fixed k, choice of k, and prediction will be discussed.

Quarterly gross national product (GNP) in current (non-constant) dollars

* for the twenty years 1947 to 1966 was considered. (This makes a good size

dataset for the current exposition.) Parameters were estimated from the first

19 years, the last four observations (1966) being saved to test the accuracy

of predictions. (See Section 4.3.) The data and first differences are given

in Table 1. The raw series is nonstationary, so the first differences

(increases in quarterly GNP) were analyzed. The notation is

xt = GNP t+- GNPt, t - 1,2,...,79;

e.g., GNPI is the GNP at the end of the quarter 1947-1, GNP2 is that at the

end of 1947-2, and x, M GNP - GNP is the increase in GNP during the second
2 1

quarter of 1947. (A negative value of an x indicates a decrease in GNP

for the corresponding quarter.) A Gaussian model was used,
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4.1. Fitting the model

In this section we discuss the fitting of a model with k-3 classes,

discussion of the choice between alternative models being deferred to the

next section. The three classes may be taken as corresponding to recession,

recovery, and expansion, although some may prefer to think of the segments

labeled as recovery as level periods corresponding to peaks and troughs.

The approximate maximum likelihood solution found by the iterative procedure

was i = -1.3, D = 6.2, D = 12.3, 8 = 5.1941/2 . 2.28 (the units are

billions of current (non-constant) dollars) and

[625 .250 .125

= 1.156 .625 .219f

.039 .269 .692

The estimated labels are given below; labels (r=recession, e=expansion)

resulting from fitting k=2 classes (see below) are also given.

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

label, k=3: 2 2 3 2 2 2 1 1 1 1 1 3 3 3 3 3 2 2 2 2 1 2 3

label, k=2: r r e e e e r r r r r e e e e e e e e r r e e

24 25 26 27 28 29 30 3] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

2 2 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 1

e r r r r r r e e e e e r r r e e r e r r r e e e e r

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

2 3 2 1 1 1 3 3 3 3 3 2 2 2 2 3 3 3 3 3 2 3 3 3 3

e e r r r r e e e e e e e e e e e e e e e e e e e

The process was in state 1 for 21% of the time, in state 2 for 44% of the time.

and state 3 for 35% of the time.

The conventional wisdom regarding recessions during the period of time

covered by these data includes the following. [See, e.g., Mansfield (1974),

pp. 209-211.] In 1948-1949 (t-4 to 11) there was a reduction of inventory
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investment. In 1953-1954 (t-24 to 31) there was a reduction in government

expenditures when the Korean conflict came to a close. In mid-1957 to late

1958 (t=42 to 45) an ongoing recession was aggravated by a drop in defense

expenditures in late 1957. In 1960 (t=52 to 55) monetary and fiscal authori-

ties had put on the brakes; interest rates had risen substantially during

1958 and 1959.

An interesting feature of the model and the algorithm is that, as the

iterations proceed, some isolated labels change to conform to their neighbors.

This should be the case when p is large relative to pd' d=l,2,...,k, d i c.
cc d

It is customary to fit an ARI(l,l) model to such data. [See, e.g.,

Nelson (1973), pp. 64-65.1 Hence AR(l)'s were fit within segments in a

preliminary analysis of the data. One might expect that segmentation might

absorb the autocorrelation. This was in fact found to be the case. The values

of the estimated first-order autocorrelation coefficients were not significantly

different from zero. Thus the model with conditional independence, given the

labels, was used.

4.2. Choice of number of classes

Various values of k were tried, the results being compared by means of

Akaike's Automatic (model) identification criterion (AIC). [See. e,g.,

Akaike (1981).] The AIC for a given model is

AIC = -2loge L + 2p,

where L is the maximized value of the likelihood and p is the number

of parameters in the model. According to AIC, inclusion of an additional

parameter in a model is appropriate if log eL increases by one unit or more,

i.e., if L increases by a factor of e or more.
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The model was fit with several values of k and unrestricted transition

probabilities. Also, since it seems reasonable to restrict the transitions

to those between adjacent states, these models were evaluated as weel. In the

case of k-3, where the states might be considered as recession, expansion,

and recovery, this means setting equal to zero the transition probabilities

jcorresponding to the transitions, recession-to-expansion and expansion-to-
recession. Also, by way of comparison, the ARI(l,l) model

xt f Oxtl + 6 + ut, xt = GNPt+ I- GNPt ,

was fit. The lID model of independent and identically distributed Gaussian

observations was fit also, just for comparison. The results are given in

Table 2. The best segmentation model, as indicated by minimum AIC, is that

with only two classes. [The AIC for AR(l,l) was even lower.] The AIC for

the lID model was quite large, indicating a very poor fit, as would be

expected.

The results for k-2 classes (which might be labeled recession, expansion)

were i1 = 0.43, 2 = 10.09, a = 3.306, and

67 .33T-

.170 .830J

The process was in state 1 for 37% of the time and class 2 the other 63% of

the time. The labels were given above.

A model with only two classes enjoys advantages relating to its relative

* simplicity.

jT.
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4.3. Prediction

If there is feedback, in the sense that yt becomes known before xt+ 1

is to be predicted, then, given yt tc, one can give the prediction

St+llYt=C = U1 with probability pcl

= 12 with probability p 2

=Uk with probability pck"

In this example this gives rise to a "recession probability," Pcl' reminiscent

of the "precipitation probability" of meteorology.

Similarly, one has

Xt+hlYtc = V with probability Phl
1 ~cl

= u2 with probability p(h)2 Pc2

^(h)
= uk with probability pck

^(h)where pcd is the natural estimate of the k-step c-to-d transition probability,

the c,d-th element of the h-th power of P.

These are vector estimates, with probabilities attached to the elements
k ( h )

of the vector. A scalar estimate is given by I Pcd Ud, for any h = 1,2.
d=l

Now let us consider prediction based on the model with k=3 classes. fit in

Section 4.1. We predict x76, x 77, x7 8, and x79. Consider first the prediction

of x7 6. If, before it had to be predicted, one had been sure, due to the

accumulation of information on various economic indicators, that the process

had then been in an expansion (state 3), then the relevant estimated transition

(o
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probabilities would be .039, .269, and .692, for transitions from state 3

to states 1, 2, and 3, respectively. One would make the prediction

x76 1Y7 5=3 W -1.3 ± 2.338 with probability .039

W 6.2 ± 2.318 with probability .269

W 12.3 ± 2.321 with probability .692,

where the numbers after ± are approximate standard errors of prediction, namely,

[a2(1 + 1/n ) 1/2, c - 1,2,3, or, since the numbers of observations assigned

to the three groups were nI = 19, n2 = 29, and n3 = 27, [5.194(1 + 1/19)11/2

= 2.338, [5.194(1 + 1/29)] 1 /2 = 2.318, and [5.194(1 + 1/27)] = 2,321.

The actual value of x76 was 19.5, a very strong gain in GNP for that period,

certainly consistent with a prediction of "expansion," The values of xtly =3,

t = 77, 78, 79, are the same as those for x76 1Y75 =3.

The difference 19.5 - 12.3 = 7.2 is rather large. However, the fitted

ARI(l,l) model xt+1 = 0.597x t + 2.64, with a = 4.95, also made a large error

for this quarter. It gave a prediction of 13.9, with an approximate standard

error of prediction of 4.95. Its successive forecasts for the last three

quarters represented in the data set, in each case using the observation from

the previous quarter, were 14.3, 10.9, and 10.2, each with standard error of

prediction equal to 4.95, compared with actual results of 13.8, 12.6, and 14.8,

respectively.

Now let us consider prediction more than one period ahead. Given

information for t=75, we predict x 7 7 , x78 ? and x79. Using the third row

of the second, third and fourth powers of P, one finds

( ..'T[
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x771Y75 -3 - -1.3 with prob. .093

M 6.2 with prob. .364

M 12.3 with prob. .543,

x78 1Y75 ff3 M -1.3 with prob. .136

f 6.2 with prob. .397

= 12.3 with prob. .467t

x7 9 y7 5 f3 = -1.3 with prob. .165

= 6.2 with prob. .408

= 12.3 with prob. .427.

I' We have

limh. x t+hlyt=c = -1.3 with prob. .211

f 6.2 with prob. .411 (4.1)

12.3 with prob. .378,

independent of c and t, because (.211, .411, .378) is the estimated long-run

distribution across the states. The predictions of ARI(1,1) are

x7 7 1x75  i 10.9, std. err. = 5.76,

x78 1x75 = 9.2, std. err. = 6.03,

x79 1x75  - 8.1, std. err. = 6.12.

By way of comparison with (4.1), in the long run, these forecasts from ARI(I,I)

tend to 6.55, the estimated mean of the process, with an estimated standard

error of 6.167, the estimated standard deviation of the x's.

Acknowledgement. This research was supported by Office of Naval Research

Contract N00014-80-C-0408, Task NR042-443, at the University of Illinois at

Chicago Circle.
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Table 1. GNP. Units: billions of current (non-constant) dollars

(from Nelson (1973), pp. 100-101)

Quarter

1 2 3 4 1 2 3 4

1947-48 GNP 224 228 232 242 248 256 263 264

AGNP 4.0 4.2 10.3 5.9 7.6 6.9 1.4 -5.4

1949-50 GNP i39 255 257 255 266 275 293 305

AGNP -3.3 1.9 -2.1 11.0 9.4 17.7 11.4 13.5

1951-52 GNP 318 326 333 337 340 339 346 358

AGNP 7.8 7.0 4.1 2.6 -0.4 6.5 12.1 6.5

1953-54 GNP 364 368 366 361 361 360 365 373

AGNP 3.3 -1.7 -5.0 -0.1 -0.3 4.3 8,7 12.8

1955-56 GNP 386 394 403 409 411 416 421 430

AGNP 8.2 8.1 6.3 1.8 5.6 4.4 8.9 7.4

1957-58 GNP 437 440 446 442 435 438 451 464

AGNP 3.0 6.4 -4.8 -6.8 3.6 13.1 13.0 9.6

1959-60 GNP 474 487 484 491 503 505 504 503

AGNP 12.9 -2.9 6.5 12.5 1.7 -0.5 -0.9 0.3

1961-62 GNP 504 515 524 538 548 557 564 572

AGNP 11.3 9.3 13.5 10.1 9.4 7.2 7.6 5.4

1963-64 GNP 577 584 595 606 618 628 639 645

AGNP 6.8 10.5 11.1 11.9 10.3 10.9 6.2 17.7

1965-66 GNP 663 676 691 710 730 743 756 771

12.9 15.4 18.9 19.5 13.8 12.6 14.8
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Table 2. Pitting models. (See Section 4.2.)

Model AIC

Segmentation, 2 classes 481.4

Segmentation, 3 classes, full trans. prob. maLrix 483.6

b
Segmentation, 3 classes, sparse trans. prob. matrix 488.5-

Segmentation, 4 classes, full trans. prob. matrix 507.1

Segmentation, 4 classes, sparse trans. prob. matrixb  486.8

Segmentation, 5 classes, full trans. prob. matrix 506.5+

Segmentation, 5 classes, sparse trans. prob. matrixb  stoppedc

Segmentation, 6 classes, full trans. prob. matrix stopped c

AR() d  453.2 e

ARi

IID f  1721.4

a. Optimum, among segmentation models considered.

b. Allows transitions only to adjacent states.

c. Stopped, i.e., the algorithm reached an iteration where it allocated
no observations to one of the classes.

d. AR(l) for the differences, i.e., ARI(l,l) for the original series.

e. Optimum, among all models considered.

f. Observations treated as a random sample from a normal distribution.

-4J
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The problem of partitioning a time-series into segments is considered. The
segments fall into classes, which may correspond to phases of a cycle
(recession, recovery, expansion in the business cycle) or to portions of
a signal obtained by scanning (background/clutter, target, background/
clutter again, another target, etc.; or normal tissue, tumor, normal
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(Abstvct, continued)

Parametric families of distributions are considered, a set of parameter

values being associated with each class. With each observation is associ-

ated an unobservable label, indicating from which class the observation

arose. The label process is modeled as a Markov chain. Segmentation

algorithms are obtained by applying aemethod of iterated maximum likelihood

to the resulting likelihood function. In this paper special attention

is given to the situat:,3n in which the observations are conditionally

independent, given the labels. A numerical example is given. Choice

of the number of classes, using Akaike's automatic (model) identification

criterion (AIC), is illustrated. Prediction is considered.
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